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Catastrophic fracture induced fracto-emission 

HONGLAI TAN, WEI YANG 
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, 
People's Republic of China 

Fracto-emissions accompanying crack propagation were observed in recent experiments. 
The energy impulses during and after each atomistic fracture increment stimulate the 
fracto-emission. A model of the atomic scale cleavage processes is proposed to formulate 
a catastrophic fracture theory relevant to these phenomena. A criterion for catastrophic jump 
of the cleavage potential is applied to representative crystals. We simulate the propagation 
of the emitted particles along a crack bounded by zigzag surfaces and quantify the long-time 
delay law of fracto-emissions after fracture. 

1. Introduction 
Recently experiments on fracture processes have 
shown the emission of particles, including photons, 
electrons, ions and neutral species, "during" and 
"following" the fracture of materials 1-1,2]. These phe- 
nomena are collectively termed "fracto-emissions" 
because the material fracture appears to be a prerequi- 
site for their appearance. Fracto-emission can serve as 
an attractive aid to understand atomic scale fracture 
processes. The transport of fracto-emissions has pro- 
ved to be a useful probe of the local environment in 
materials where that transport is limited by the local 
geometry. Experiment by Langford et al. [3] used the 
photon emission as a probe of chaotic processes ac- 
companying fracture. 

Dickinson et al. [1] and Fuhrmann et aL [21 gave 
estimates that fracto-emissions are caused by the high 
concentration of energy spikes deposited into a small 
volume of material during crack propagation. The en- 
ergy impulse excites particles and creates defects in 
materials, and consequently results in the emission of 
excited and reactive species in a gas phase. The mecha- 
nism for creating an energy impulse remains equivocal. 
In the present paper we construct a catastrophic frac- 
ture theory to investigate this process. The energy cri- 
terion for fracto-emission is formulated. The cleavage 
model of atom strings embedded in a cracked con- 
tinuum, as analysed in detail by Tan and Yang [4], is 
applied to evaluate the energy impulse on bond break- 
ing. For fracture controlled by dislocation emissions 
(Tan and Yang [5]), similar energy impulses can be 
revealed as the crack moves forward, although there is 
no cleavage-like bond breaking during this procedure. 

In most cases, the intensities of fracto-emissions 
reach their peak during the fracture event and decay 
afterward. However, recent measurements by Dickin- 
son et al. [-6] show rapid, intense bursts of atomic and 
molecular emissions that arise after the fracture. They 
attributed these bursts to the energetic emergence 
("popout") of dislocations at a free crack surface. We 
find catastrophic energy release, and consequently 

emission burst, during the unloading process of cleav- 
age, though this phenomenon has not been addressed 
in the literature. 

Dickinson et al. [7] reported measurements of long- 
time decay from 10-2 to 10 3 s of photon and electron 
emissions following fracture from several polymeric 
and inorganic systems. The experiment suggested 
a strong correlation between the long-time decay and 
the local structure at the fracture surface. Applying the 
rough morphology of the crack surfaces, we propose 
a zigzag crack model to quantify this process. The 
model simulates a decay law for the fracto-emission 
intensity consistent with the experiments. 

2. Fracto-emissions by catastrophic 
cleavage processes 

2.1. Atom string model for cleavage 
We consider an averaging plane strain continuum 
deformation. The three-dimensional atomic motions 
(solid particles) can be studied by their projections 
(shaded images) onto the plane perpendicular to 
e3 direction, as depicted in Fig. 1. The current crack 
tip rests at the atom pair 1 and 1'. The three-dimen- 
sional atom string line orients at an angle 0 with the e2 
axis. The angle 0 reflects the actual three-dimensional 
lattice structure. 

Fig. 2 delineates the plane strain projections of the 
atom string (which is embedded in the surrounding 
continuum containing a crack) before and after an 
atomistic cleavage step. This model simplifies the 
combined atomistic/continuum configuration pro- 
posed by Yang et al. [8] and by Tan and Yang I-9, 10]. 
The continuum stress field surrounding the crack tip is 
symmetric and scaled by the mode I stress intensity 
factor K~. For the study of an atomistic cleavage 
process, the continuum in the vicinity of the crack tip 
can be viewed as linear elastic [9]. In the figure, 
c5 denotes the distance between the neighbouring atom 
strings along the central crack extension line in the 
projection plane. 
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for the motion of atom 1 is 

�9 . . . ~ 1 7 6 1 7 6  

Atom 1 o" 

O Crack tip el 

/ ~  Atom 1' 

Figure 1 Crack tip model for plane strain problem. Atoms in three- 
dimensional configuration are projected to the plane perpendicular 
to the e 3 direction. The solid circles refer to the three-dimensional 
lattice atoms, the shaded ones refer to the projected atoms. 
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Figure 2 Two-atom string model at a crack tip modelling the cleav- 
age process. The solid line refers to the current crack tip configura- 
tion, and the dashed line refers to the subsequent configuration with 
a crack moving one interatomic distance ahead. The atomic motion 
interacts with the motion of the surrounding continuum. 

The surrounding continuum exerts two effects on 
the movement of atom 1. One is the stretching effect 
due to the remote stress intensity factor K~, which 
under an equilibrium deformation causes a force F[  q. 
Following the derivation of Tan and Yang E4], we 
have 

F[q(KI) = 0.8lawc 51/2 KI (1) 

where w is the width of the crack front shared by each 
bonding atom pair. The other effect is the confining 
effect by the continuum against the atom displace- 
ment, described by k I through the following expression 

kffE') = 0.513E'w (2) 

where E' = E/(1 -- v2). E is the Young's modulus, and 
v is the Poisson's ratio. 

d 
mii2 = - duz U(u2; KI, E'), (3) 

where m is the mass of the atom, and u2 is the vertical 
displacement of the atom~ The cleavage potential at an 
equilibrium state has the following expression 

1 
U(u2; KI, E') = ~ ( r ( u 2 )  ) 

l , 2 
- F[q(K,)u2 + ~ki(E )u2 (4) 

where u2 is the state variable, and K~ and E' are 
macroscopic parameters characterizing the loading 
intensity and the material property. The rapid conver- 
gence to an equilibrium state was re'asoned by Tan 
and Yang [4]. The distance between atom 1 and 1' is 

r(u2) = [(r0 cos0 + 2uz) 2 + (r0 sin 0)2] 1/2 (5) 

where ro is the stress-free nearest interatomic distance. 
The interatomic potential @(r) takes different forms 

for different kinds of bonding. For  ionic crystals, the 
theory of Born gives 

A e 2 
(I)(r) = )5 - 0~M 4rC-~o r (6) 

where s denotes a dimensionless exponent of about 10, 
A an interatomic bonding constant, c~M the Madelung 
constant, e the unit of electron charge, and So the 
dielectric constant. For  crystals with metallic or 
covalent bonds, we take the simple expression sugges- 
ted by Cherepanov [11] 

qP(r) = I -- 3 ( ~ ) 6  + 2 ( ~ ) 9 1 e  0 (7) 

where eo is the reference interaction energy. 
During a non-equilibrium bond breaking process, 

the force acting on atom 1 is denoted as FifO, and it 
varies with time t during the cleavage process. We 
denote the time interval for the crack tip to move 
ahead a distance 5 as ~frac and the force acting on the 
crack tip atom to cause a catastrophic bond breaking 
as F~c. Obviously, Fif O is bounded above by Fic. 
Under sustained loading of KI, Fifo increases mono- 
tonically with time and converges to F~ q when t 
exceeds tfrao- The non-equilibrium cleavage potential 
can be formally written as 

1 1 f 2 U(u2; F,, E') = ~( r (u2 ) )  - F,u2 + ~ki(F~ )u2 (8) 

This potential is applicable to a nearly quasi-static 
process prior to fracto-emission. 

2.2. Energy impulses induced 
fracto-emission 

The crack tip atomic potential drops when the 
crack advances. The released potential energy con- 
verts into the kinetic energy of the crack tip atoms. 
Two channels exist to absorb or to diffuse this kinetic 
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energy. One is through the excitation of fracto-emis- 
sions, and the other is through wave propagation. 
Fracto-emissions will be excited when the energy 
impulse is sufficiently high and cannot be effectively 
carried away by wave propagation in the time interval 
of tfrac. 

As fracture proceeds, the cracked surface is 
left in a highly excited state. Vibration excitations 
with effective surface temperatures in excess of 
1000 K may be possible [12]. The high temperature 
renders fracto-emission easier. As a result, the 
probability of fracto-emission can be expressed in an 
Arrhenius form 

�9 f x F(AE--E)] 1} 
Prob = m m l e  eL ~ - ~  -j, (9) 

where kB is the Boltzmann's constant, T is the 
temperature in Kelvin at the crack tip, AE is the 
energy released in a time interval prior to any substan- 
tial energy diffusion by wave propagation, and 12 is the 
energy barrier to bring out a fracto-emission particle. 
Different particle emissions relate to different physical 
or chemical reactions, so have different values of t2. 

Values of 12 can be estimated from the results 
of sublimation experiments. Take the example of 
fracto-emission for NaC1 monomers. Experiments 
[13] indicate that the emission of an NaC1 monomer 
from a defect-free flat surface requires 2.2 eV. The 
energy required for fracture related emission 
should be considerably lower than that. The sublima- 
tion energy on a cracked surface of NaC1 is about 
0.25 eV [13]�9 

The available time for fracto-emission, tf .... can be 
estimated from the crack propagation velocity vf,,o 

tfr,r -- (10) 
Vfrac 

The crack velocity can be estimated from light trans- 
mission measurements [14]. In experiments concern- 
ing fracto-emissions, this value can vary from very 
slow (several m s- 1) to very fast (hundreds of m s- 1). 
Consequently, the time interval tfr,o for fracto-emis- 
sions ranges from 100 ps (slow cleavage) to 0.2 ~ 1 ps 
(fast cleavage). 

2.3. Catastrophic j ump for s low cleavage 
processes 

We now investigate the slow cleavage case where 
tfrac is about 100 ps. This time interval is much larger 
than the dynamic characteristic time t . . . .  defined by 

ao t . . . .  - (11) 
/)wave 

where Vwave denotes the smallest stress wave speed and 
ao is the crystal lattice parameter. Typical data give 
the order of t . . . .  in the range of 0.1-0.2 ps. For the 
slow cleavage case, we have tfrac >> t . . . . .  and a quasi- 
static approximation can be applied to the governing 
Equa t ion  3. Accordingly, Fi(t) is a slow varying 
function during the cleavage process, and remains 
unchanged during bond breaking. Under the applied 

the equilibrium atom displacement u~ q can be El, 
solved from 

1 
f(r(u~q) ) d e~221 ) FI + ki(E')ue2 q = 0 (12) 

2 

where the interatomic force is given by 

f(r) = -- d~(r)/dr (13) 

When the solution of Equation 12 satisfies 

1 eq (dr(u~q)~ 2 lf(r(u~2q))d2r(u~ q) 
7 kf(r(u2 )) \ dug // du~ 

+ K,(E' )  > 0 (14) 

with 

d 
kf(r) = - ~rr f(r)  (15) 

the crack tip atom has the minimum potential and 
stays at a stable configuration. The atomistic config- 
uration is unstable otherwise. 

Taking the special case of a0 = 4A, m = 1.0x 
10-2Skg, eo = 2.22eV and a simple cubic lattice 
structure, one gets E' = 84.2 GPa provided the expres- 
sion of q)(r) is given by Equation 7. The u~n(Fi) curve 
for this representative case is shown in Fig. 3. This 
curve shows the fold catastrophe with the fold points 
at A and B, and they give two critical values Fic 1 and 
FIC 2. When F~ < Fro2 or F~ > F m l  , Equation 12 pos- 
sesses a unique solution. When Fic  2 < F] 

< F~cl, three solutions coexist. The reference force in 
the figure is Fo = 0.818 a 2 E'. The solid curves in Fig. 3 
refer to stable states and the dashed curves to unstable 
states. Their distinction is made by Condition 14. 

Fig. 3 reveals a negative hysteresis loop during the 
loading and unloading cycles. When the load FI in- 
creases from a low value up to F~cl, the crack tip atoms 
will catastrophically jump outward from state A to 
state A', as shown in Fig. 3. On the other hand, when 
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Figure 3 Catastrophic jump of the equilibrium position of the crack 
tip atom during the cleavage process. The solid curves refer to stable 
states and the dashed curves to unstable states. 
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Figure 4 Catastrophic release of the cleavage potential energy. The solid curves refer to stable states and the dashed curves to unstable states. 

the applied force reduces from a high value down to 
FIC2, the crack tip atoms will catastrophically jump 
inward from state B to state B'. The unilateral jumping 
amplitude for one atom ranges from 0.15 ~ 0.25a0. 
These two catastrophic changes of atom behaviour 
give sudden potential energy releases during and after 
fracture, as observed in the experiment of Dickinson 
et al. [6]. 

We show in Fig. 4 the catastrophic release of cleav- 
age potential for the same representative case. Consis- 
tent with the displacement process, the catastrophic 
jump of the system from state A to state A' gives an 
energy release of AE1 = 0.18 eV. In unloading the 
catastrophic jump from state B to state B' gives an 
energy release of AE2 = 0.10 eV. 

The time duration for this catastrophic energy re- 
lease can be estimated from 

tjump = Au2//)jump (16) 

where Au2 is the jump value of the vertical displace- 
ment at catastrophe. In deriving Equation 16, we as- 
sume atom 1 separates from atom 1' by uniform accel- 
eration to achieve Vjump, the jumping velocity of the 
bond-broken atom. The potential energy jump AEt of 
the atom pair is transformed into the kinetic energy 
mv2ump of two symmetric atoms at the crack tip. There- 
fore, Vjump can be evaluated as 

V jump = (17) 

Combining Equations 16 and 17, one finds the time 
interval in the opening jump for the crack tip atom 
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pair is about 0.18 ps, provided the unilateral vertical 
jump is Au2 = 0.25ao. This jump time is relatively 
short, so that the energy impulse released during 
the catastrophe cannot be effectively taken away by 
wave dispersion and can be supplied to cause fracto- 
emissions. 

Fracto-emissions hardly occur without the presence 
of a catastrophic jump. In the time duration of(0, tfrac ) 

before a catastrophic jump, Fig. 4 shows a continuous 
potential release. However, this energy release is too 
slow to cause fracto-emissions. The energy release rate 
can be estimated as approximately (U0 - g A ) / t f  . . . .  

where Uo is the potential at the reference configura- 
tion and UA is the-potential before the catastrophic 
point A. The energy release rate during the catas- 
trophe, namely AE1/tjump, is about 360 times higher 
than the average energy release rate before the cata- 
strophic jump. Therefore, the energy impulse to stimu- 
late the fracto-emission can only be generated by the 
catastrophic jumps. 

Under a prescribed F~ value, the solution u~ q for 
Equation 12 depends critically on E'. Fig. 5 shows the 
surface u~2q(E ', F[). This graph has the structure of 
a cusp catastrophe. From terms in catastrophe theory, 
the curve on the surface where the upper and lower 
sheets fold over into the middle sheet is called the 
fold-curve. The projection of this curve onto the hori- 
zontal controlling plane forms the bifurcation set. 
Although the fold curve is a smooth curve, the bifurca- 
tion set has a sharp point C, forming a cusp, as shown 
in Fig. 6. Two continuous lines L~ and L2 comprising 
the bifurcation set outline the main thresholds for 
sudden behavioural change of the system. 
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Figure 5 Three-dimensional portrait of the surface u~fl(E ', F[) shows a cusp catastrophe�9 Each line in the surface corresponds to a specific 
material characterized by the elastic constant E'. 
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We now deduce the equation for the bifurcation set. 
Along the three-dimensional fold curve, one has 

~U~ q ~U~ q 
- oo and - oo (18) 

~E'  ~ F  I 

These two equations share the same requirement that 

1 k f ( r (u~q) ) (d r (u~q) )  2 _ lf(r(u~2q)) d2r(u~q) 
\ du2 ] du 2 

+ ki(E') = 0 (19) 

Combining Equations 12 and 19 we define the curves 
L1 and L2. During the loading induced cleavage pro- 
cess, a catastrophic jump would occur if the loading 
path (at a prescribed E') travels across the branch L1 
from left to right. During the unloading process, a re- 
verse catastrophic jump would occur i f  the unloading 
path travels across branch L2 from right to left. 

The cusp point C provides a critical value for ~ the 
material parameter E' .: 

{ ~ I  ( d r  (u ~q)'~2 
E~ = 0<,~q<oomax - kf(r(u~fl)) \ du2 ] 

+f(r(u~q)) ~ 1  } (20) 
The criterion for the material to have a catastrophic 
jump is 

E' < E l  (21) 

Table I lists relevant data for several representative 
materials based on the present theory for slow crack- 
ing. Values of ao, A, s, E' for case (a) are taken from 
experimental data reported in [15, 1611 Values of ao, 
Co, E' for cases (b)-(d) are calculated from experi- 
mental data in [17, 18]. Some materials listed in the 
table are ductile under normal conditions and the 
fracture process is mainly controlled by dislocation 
emissions. In the cases involving laminates assembled 
by alternating sub-micron ductile arid brittle layers, 
see Hsia et al. [19], the dislocation confinement sup- 
presses the ductile fracture mode and cleavage occurs 
when the tensile stress at the crack :tip reaches the 
theoretical strength. In the case of high loading rate, 
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T A B L E  I Fracto-emission analysis on representative materials 

(a) Ionic crystals of NaC1 structure, cleavage system (001) [100] 
0 = 07 ~ = ao, w = ao, r 0 = a 0 

Crystal a o A s E' E~ AE 1 AE 2 
(nm) (eV(nm) s) (SPa) (aPa)  (eV) (eV) 

LiF 0.201 1.03 x 10 .4  6.20 108 314 3.18 1.05 
NaC1 0.282 2.91 x 10 .5 8.38 43.4 109 2.30 0.926 

(b) MetalIic crystal of fcc structure, cleavage system (001) [1 113] 
21/2 21/2 2t/2 21/2 

c o s 0 = - - , 2  5 = ~ - a 0 ,  w = - - ~ - a o ,  r o = - - 2  a0 

Crystal a o e o E' E~ Fracto-emissions 
(rim) (eV) (6Pa) (GP~  

Cu 0.255 0.391 147 102 No 
A1 0.286 0.359 79.8 66.6 No 

(c) Metallic crystal of b c c  structure, cleavage system (001) [100] 
1 1 31/2 

c o s 0 = 3 - 1 / 2 , 5 = 2  a ~ 1 7 6 1 7 6  ao 

Crystal a 0 e o E' E~ Fracto-emissions 
(nm) (eV) (GPa) (GPa) 

Fe 0.248 0.780 231 155 No 
W 0.274 1.57 446 230 No 

(d) Covalent crystal of diamond cubic structure, cleavage system (1 1 1) [ 0 i l ]  
21/2 61/2 3x/2 

cos0 = 1, 6 = ~ - a o ,  w = - ~ a o ,  ro = - -  4 ao 

Crystal a 0 e 0 E' E c AE 1 AE a 
(nm) (eV) (GPa) (aPa)  (eV) (eV) 

C 0.154 3.59 1.09 x 103 2.46 x 103 0.644 0.660 
Si 0.235 2.16 154 416 0.764 0.488 
Ge 0.245 1.96 123 334 0.688 0.445 

some apparently ductile materials will cleave, 
as demonstrated by Tan and Yang [9]. The results 
in Table I indicate that we can hardly observe 
fracto-emission in metallic crystals. The fracto-emis- 
sion for ionic and covalent crystals can be easily 
observed. The catastrophic energy release under these 
materials varies from 0.4~3.2 eV, sufficient to induce 
fracto-emission. 

2.4. Fast cleavage processes 
In the fast cleavage case, Vfrac is comparable to the 
wave propagation velocity so that t . . . .  g tf,,o. The 
potential energy releases continuously and rapidly in 
the short time period tfrac. This contrasts with the slow 
cleavage case where the energy release rate is negli- 
gible most of the time and has an impulse in tile 
incident of catastrophe. For  the fast cleavage case, the 
total energy released, when the crack tip advances one 
inter-atomic distance, is comparable to that released 
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during a catastrophic jump for the slow cleavage case. 
This continuous energy release will drive successive 
fracto-emissions. 

Similar impulses of energy release can be predicted 
for dislocation emission processes, under the disloca- 
tion emission band model by Tan and Yang [5]. 

3. Long-time decay of fracto-emissions 
3.1. Zigzag crack model for fracto-emission 
Scanning tunnelling microscope observations of LiF 
fracture surfaces indicate that they can be very rough 
on the nanoscopic scale [6]. A simple quantitative 
description for an irregular surface was to model it as 
a zigzag surface, as shown in the schematic profiles in 
[20]. Using the zigzag profile model, we present here 
a numerical simulation of the fracto-emission process 
channelled by the cracked surfaces. The result suggests 
that the long-lasting tail seen in the photon emissions 
is caused by the zigzag character of crack surfaces. 
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Figure 7 Zigzag crack profile model. Fracto-emission particles bounce at the irregular surface. 
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Figure 8 Numerical simulation result for the long-time decay of the fracto-emission intensity in zigzag crack surfaces. 

We propose the regular zigzag profile as in Fig. 7. In 
the figure, ~ and d represent the angle and the step 
length of the zigzag, and h denotes the crack separ- 
ation. The fracto-emission generated at the crack tip 
will travel along the narrow zigzag crack. The emitted 
particles hit on the crack and reflect, causing the time 
delay before they are recorded by the detector. We 
assume no energy lost in the reflection process and the 
interaction of the emitted particles with the crack 
surface costs little time. We take the fracto-emission 
generation site, described by the parameter y, and the 
emitting angle, ~, to be random. The partic!es fly in the 
crack with a constant velocity. Under the above simpli- 
fications, we calculated the time duration for the par- 
ticle escaping from the crack tip to reach the detector. 

3.2. Long-time decay estimate 
Fig. 8 shows the result calculated by the zigzag crack 
model. In the simulation we take crack parameters to 
be d = 2 lam, h = 20 nm, �9 = 60 ~ and the length Of 
the crack to be L = 2 mm. The emitting angle a takes 
random values within ( - 90 ~ 90~ and the emitting 
position y takes random values within (0, h). 

If the crack is ideally flat, after averaging different 
emission angles ~, the time for the particles to fly out 

of the crack is 
~L 

to - (22) 
2remit 

where remit is the velocity of the emitted particle. We 
simulate the propagation process of 5000 particles 
along the crack under a random emission. The particle 
beam intensity Io(t) is defined as 

N(t, At) 
lo(t) = l i r a -  (23) 

a~0  At 

where N(t, At) is the number of the particles collected 
by the detector during an infinitesimal time interval 
I t -  At/2, t + At/2]. Taking the maximum value of 
the intensity to be I0m, we define the relative emission 
intensity as 

I(t) = Io(t)/Iom (24) 

From the figure we observe that the fracto-emission 
reaches its peak on the time scale of 63.7t0 following the 
fracture, translating to about 0.4 ms, if/)emit is taken as 
500 ms -1. It decays for a relatively long time. In 
4 s after the fracture we can still observe the fracto- 
emissions. 

Fig. 9 shows a log-log plot of the after-peak fracto- 
emission intensity versus time. The relation between 
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Figure 9 Log-log curve of the fracture emission intensity versus time for the after-peak decay period. 

log(/(t)) and log (t/to) is roughly linear. From the figure 
we get 

log I(t) = )v - -  13 log(t/to) (25) 

From the slope of the log-log curve we can estimate 
that 13 = 0.63. This gives an emission decay law of 

1 
I(t) oc 7~ (26) 

The value of 13 depends on �9 and h/d, which are 
controlled by the material properties and the load 
amplitude. We expect that 13 increases as either ~ or 
hid increases. Using a random walk description of the 
recombination process, Dickinson et al. [7] got a rela- 
tion similar to Equation 26 from the experimental 
data. In the experiments, they obtained 13 as 0.83 for 
photon emission following the fracture of neat epoxy, 
and 0.79 for electron emission of Kevlar-filled epoxy. 

4. Concluding remarks 
Fracto-emissions accompanying crack propagation 
are studied in an atomistic model of fracture. The 
following conclusions are reached: 

1. Energy impulses may be released during the 
cleavage processes when the crack tip atom pair 
undergoes loading or unloading. These energy releases 
account for the fracto-emissions during and after frac- 
ture. In the slow cleavage case, the debonding of 
metallic crystals cannot induce a catastrophic energy 
jump, and thus cannot cause fracto-emissions. The 
cleavages of ionic and covalent crystals show obvious 
energy impulses. Criterion for the fracto-emission is 
formulated. Energy impulses are also released during 
dislocation emission processes. 

2, Long-time decay of the fracto-emission may at- 
tribute to the zigzag morphology of the crack surfaces. 
Fracto-emission through a regular zigzag is simulated 
to estimate the interception intensity at the detector. 
An inverse power law for the emission intensity versus 
decaying time correlates to the simulation data. This 
decay law is similar to that obtained from experiments. 
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